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Abstract. We study the effects of dissipation or leakage on the time evolution of Grover’s algorithm
for a quantum computer. We introduce an effective two-level model with dissipation and randomness
(imperfections), which is based upon the idea that ideal Grover’s algorithm operates in a 2-dimensional
Hilbert space. The simulation results of this model and Grover’s algorithm with imperfections are compared,
and it is found that they are in good agreement for appropriately tuned parameters. It turns out that
the main features of Grover’s algorithm with imperfections can be understood in terms of two basic
mechanisms, namely, a diffusion of probability density into the full Hilbert space and a stochastic rotation
within the original 2-dimensional Hilbert space.

PACS. 03.67.Lx Quantum computation – 03.67.-a Quantum information –
02.60.-x Numerical approximation and analysis

Recently, quantum computing has emerged as one of the
most challenging fields of physics both for theoreticians
and experimentalists (see Ref. [1] for a review). At the
core of the theoretical side, a few quantum algorithms are
now available, which can solve a certain class of problems
faster than any available classical counterparts: for exam-
ple, Shor’s algorithm [2] factorizes a given large number
N at ∼ (logN)2 time steps with an exponential speed-up.
Using Grover’s algorithm (GA [3]), one can find a specific
item on a long list of size N at ∼ √

N time steps, which
is a considerable gain in speed as compared with ∼ N in
classical algorithms.

These quantum algorithms operate perfectly only on
ideal quantum computers. On the other hand, a certain
amount of dissipation or uncontrolled coupling to the en-
vironment is clearly inevitable on real quantum comput-
ers. For example, any deviation from ideal operation in
quantum gates, which may result from various origins, in-
cluding fluctuation in the excitation energies of two-level
systems (qubits), can be considered as “imperfections”.
The imperfections will affect the efficiency of a quantum
computer, and the operability of a given quantum algo-
rithm may break down to the point of losing its advan-
tage over a classical counterpart. Therefore, it is of vi-
tal importance to have a sound picture of how an error
due to the presence of imperfections evolves in quantum
algorithms. Obviously, a reasonable picture of the basic
mechanisms given by the imperfections will be very crucial
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in constructing an appropriate quantum error correction
method [4–7].

In general, the quantum state in a quantum computer
is essentially a many-body (or network) state, the time
evolution of which is delicately controlled by a given quan-
tum algorithm. From such a point of view, the study of
imperfection effects on quantum algorithms would belong
to a more general research field which investigates disor-
der effects on the dynamics of a many-body state. Their
exact treatment is actually a complicated subject, and
only a few results have been obtained giving either gen-
eral frameworks for understanding the effects or general
methodologies for calculation.

There exist several theoretical, mainly numerical, in-
vestigations in this direction. The main stress has been
given, from a practical point of view, on the stability of
quantum algorithms with respect to the presence of im-
perfections. Cirac and Zoller [8] reported that the oper-
ability of quantum computing is rather safe against disor-
ders available in the quantum Fourier transform process.
In references [9,10], the disorder effect in Shor’s algorithm
applied to the factorization of the number 15 was studied
and by using the fidelity being defined as the square of the
overlap of the actual quantum state with the ideal one, it
was found that the operability of the Shor’s algorithm can
be destroyed due to a very small strength of the disorder
in the modular exponentiation part [10]. More system-
atic results have recently been obtained in reference [11]
from the study of quantum computing of quantum chaos
and imperfection effects: by considering the presence of
imperfections in the quantum Fourier transform, it was
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obtained that the imperfection strength scales polynomi-
ally with the number of qubits for the inverse participation
ratio (IPR), which measures the strength of localization
of quantum state and plays a role of the fidelity in refer-
ence [10]. Nevertheless, it still remains at a primitive stage
regarding an understanding of basic mechanisms carried
by the imperfections in quantum algorithms. So far, the
main policy has been simply to watch a deviation of the
quantum state from the ideal one and to analyze its pa-
rameter dependence.

In this paper, we investigate the time evolution of a
state governed by Grover’s algorithm with imperfections,
with a main emphasis on an understanding of interplay
of the imperfections with the algorithm operator. Based
on the idea that the ideal GA operates in an effective 2-
dimensional Hilbert space, a stochastic two-level model
with dissipation will be introduced, and then its simula-
tion results will be compared to those of the GA with
imperfections, which operates in a larger relevant Hilbert
space resulting from the presence of the imperfections.
They are in a good agreement via an appropriate fit of
parameters. An analytic solution of the two-level model is
given with some modification and provides a comprehen-
sive picture of imperfection effects on the GA.

Let us begin with a brief sketch of the GA. The final
goal is to identify |j〉 (target state) among N = 2nq quan-
tum states, where nq is the number of qubits. Initially, the
state of quantum register is prepared as a superposition
of all states with the same amplitude. The GA may be
broken up into two steps:

(i) rotation of phase of |j〉 by π
(ii) and application of a diffusion operator D which is

defined, in matrix form, as Dkl = −δkl + 2/N with
k, l = 0, 1, ..., N − 1, and δkl denoting the Kronecker
delta.

The step (ii) is achieved by applying the Hadamard
operation to each single qubit and then performing a con-
ditional phase shift on the computer with every computa-
tional basis state except |k = 0〉 receiving a phase shift of
−1 followed by the second Hadamard operation to each
single qubit. Then, the quantum state during time evolu-
tion can be expressed as [12]

|Ψ(ϑ)〉 = sinϑ |j〉 +
cosϑ√
N − 1

∑
k �=j

|k〉· (1)

The initial state is characterized by ϑ = ϑ0 with sinϑ0 =
1/

√
N . Each iteration transforms |Ψ(ϑ)〉 into |Ψ(ϑ + ω)〉,

where sinω = 2
√
N − 1/N . Then, after m ≈ (π/4)

√
N

iterations, ϑ becomes very close to π/2, and a measure-
ment of the state yields |j〉 with an error O(1/N). We
note that the evolution of |Ψ(ϑ)〉 according to the GA is re-
stricted to a 2-dimensional Hilbert space which is spanned
by |x〉 = (1/

√
N − 1)

∑
k �=j |k〉 and |y〉 = |j〉. Each iter-

ation represents a rotation of the quantum state by the
angle ω in the x–y-plane and the Grover’s operator for a

single iteration can be written in a familiar form

R̂(ω) =
(

cosω − sinω
sinω cosω

)
(2)

on the basis {|x〉, |y〉}.
Imperfections are introduced in the GA as follows: the

ideal Hadamard operator in the step (ii) is given by n · σ̂,
where n = (1/

√
2, 0, 1/

√
2), and σ̂x(y,z) denotes the Pauli

spin matrix. We now replace n by

mq =
1√
2
(cosϕq sin δq + cos δq,

√
2 sinϕq sin δq,

− cosϕq sin δq + cos δq), (3)

where q = 1, 2, ..., nq represent each single qubit. Here, δq
and ϕq with |δq| < ε/2 and 0 ≤ ϕq < 2π are randomly cho-
sen in an iteration of the GA and also vary randomly from
iteration to iteration. Then, it turns out that mq is a unit
vector tilted from n by ∼ ε. It should be noted that, in
spite of the imperfections, since the quantum state evolves
without coupling to the additional environment, the qubit
rotations remain unitary, keeping the normalization con-
dition 〈Ψ |Ψ〉 = 1 for any iteration number t. The pres-
ence of the imperfections will provide an additional cou-
pling between the 2-dimensional Hilbert space spanned
by {|x〉, |y〉} (“computational space”) and the rest part of
the total Hilbert space with 2nq dimensions, leading to
the quantum leakage [13] from the computational space as
an intrinsic source of error in ideal gate operations.

Typical results of the GA with imperfections are shown
in Figure 1: 〈pj〉 and F denote an ensemble-averaged prob-
ability of the target state |j〉 and an ensemble-averaged
fidelity over 100 random runs, respectively, each of which
is here given for nq = 13 and for imperfection strengths
ε = 0, 0.005, 0.01 and 0.02, respectively, as a function of
iteration number t. Clearly, they are given by

〈pj〉ε(t) =
〈|〈j|Ψ(ε, t)〉|2〉 ,

Fε(t) =
〈|〈Ψ(ε = 0, t)|Ψ(ε, t)〉|2〉 , (4)

respectively, where the outer bracket represents the en-
semble average. In the case of ε = 0, 〈pj〉0(t) oscillates be-
tween 0 and 1 and reaches 1 at t ≈ (m+ 1/2)(π/2)

√
N ≈

71, 213, 355, ... with m = 0, 1, 2, ... When ε is non-zero,
one still finds oscillating features with the same period
as in the ideal case, however, with an envelope decaying
nearly exponentially with time t. As t increases, the sys-
tem approaches a saturated regime, where the noise com-
pletely dominates the ideal system dynamics, and accord-
ingly 〈pj〉ε(t) fluctuates around 1/N . A novel feature is
that the decay affects not only the shape of the upper en-
velope but also that of the lower envelope such that the
lower envelope is not simply given by 〈pj〉ε(t) = 0. This
means that the probability for the system to remain at the
target state is still available even at the time it originally
vanishes in the ideal unperturbed system. Furthermore,
Fε(t) is found to approximately equal the upper envelope
of 〈pj〉ε(t).
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Fig. 1. Behaviors of 〈pj〉 (•) and F (◦) in the Grover’s algo-
rithm for the qubit number nq = 13 with the imperfection
strength (a) ε = 0.005, (b) ε = 0.01 and ε = 0.02 (inset). Each
data point is given, for every 20 iterations, by an ensemble-
average over 100 realizations. The dotted line of (a) represents
〈pj〉 for nq = 13 in the ideal case (ε = 0). The solid lines result
from the stochastic two-level model described in the text with
parameters (a) γ = 7.6 × 10−4, (b) 3.0 × 10−3 and 1.3 × 10−2

(inset), and (a) Wφ = 0.089, (b) 0.19 and 0.25 (inset), respec-
tively.

As noted earlier, in the absence of imperfections, the
wave-function of quantum register evolves within a very
small part (of dimension 2) of the total Hilbert space (of
dimension 2nq). Furthermore, since the amplitudes of |x〉
and |y〉 remain real or at least keep the same phase over the
time evolution, the actual relevant space is even smaller
than the 2-dimensional entire Hilbert space. Let us de-
note the 2-dimensional Hilbert space spanned by |x〉 and
|y〉 and the total Hilbert space by H2 and Ht, respec-
tively. The above results suggest that in general, the dis-
ordered GA operator yields states which are not restricted
in H2 but spread over a larger space Ht (“computational
leakage”). In other words, the presence of imperfections
induces a probability density flow from H2 to Ht with

diffusion-like nature. Then, let us define |w2(t)|2 as the
probability that the state remains in H2 at time t with an
exponentially decaying function of t,

w2(t) = e−γ t, (5)

where γ represents the strength of the diffusion which de-
pends on system parameters such as the strength of im-
perfections and the qubit numbers. Also, the imperfections
affect the dynamics of the state within H2: in general, the
phases of the two amplitudes of |x〉 and |y〉 are not equal
to each other, and it is reasonable to assume that random
phases are introduced during each iteration. Therefore,
we would now like to adopt an effective two-level model
which can encapsulate the effects of imperfections in the
GA living in Ht. Here, the time evolution of a quantum
state |ψ(t)〉 = cm(t) |m〉+ cn(t) |n〉 on the basis {|m〉, |n〉}
is described by(

cm(t+ 1)

cn(t+ 1)

)
= e−γ R̂(ω) Û(φm, φn)

(
cm(t)

cn(t)

)
, (6)

where Û(φm, φn) is a diagonal matrix with Umm = eiφm

and Unn = eiφn , and φm(t) and φn(t) are assumed to be
two independent random variables without any time cor-
relation. Let each of these phase variables be chosen from
a box distribution [−Wφ/2,Wφ/2] for a givenWφ. The fre-
quency ω = sin−1(2

√
N − 1/N) is the same as in the GA,

and the initial conditions are given by cm(0) = cosϑ0 and
cn(0) = sinϑ0 with ϑ0 = sin−1(1/

√
N). This is a stochas-

tic two-level model with dissipation and we refer to it as
STLM hereafter. Here, we obtain, after a minor calcula-
tion, an ensemble-averaged probability of the target state
|j〉 and an ensemble-averaged fidelity, respectively:

〈pj〉(γ)
Wφ

(t) =
〈|cn(t)|2〉 ,

F
(γ)
Wφ

(t) = 〈|cm(t) cos(ωt+ ϑ0)

+ cn(t) sin(ωt+ ϑ0)|2
〉 · (7)

It is noteworthy to consider the difference between the
STLM and the original GA with imperfections. First, the
finite fraction 2−nq+1 occupied by H2 in Ht is neglected
in the STLM so that w2(t) decays to zero instead of
∼

√
2−nq+1. Since we are interested mainly in the regime

before saturation, this is clearly not a significant differ-
ence. Secondly, the stochastic features of γ are not con-
sidered. But, this is not critical, either, since those fea-
tures will contribute a negligible correction to γ after an
ensemble-average in equation (7).

Now, we perform a numerical simulation to obtain
〈pj〉(γ)

Wφ
(t) and F

(γ)
Wφ

(t), which will be compared with
〈pj〉ε(t) and Fε(t) of the GA with imperfections, respec-
tively. In Figure 1, the results from the STLM are shown
as solid lines: they are given by ensemble-averages over
1000 realizations, respectively. We find that these results
from the STLM provide an impressive agreement with the
results of the GA after a proper adjustment of γ and Wφ.



302 The European Physical Journal D

This suggests that the main physical ingredients of the
disordered GA are correctly incorporated in the STLM.
Nevertheless, the origin of the novel feature in the lower
envelopes is still unclear.

Without loss of generality, (cm(t), cn(t)) in the
STLM during the time evolution can be written by
(e−γ t cosϑ(t), e−γ t+i φ(t) sinϑ(t)) with φ(t) := φn − φm

up to an overall phase. In case of φ(t) ≡ 0 for arbi-
trary t, the angle ϑ(t) increases by ω after each itera-
tion and is then given just by ω t + ϑ0. However, if φ(t)
does not vanish, then from its stochastic nature, it fol-
lows that ϑ(t)−ϑ(t− 1) is not constant but would fluctu-
ate around ω [14]. Now, under the assumption that ϑ(t)
and φ(t) are not correlated with each other, but simply
two random variables, we can find analytic expressions of
〈pj〉(γ)

Wφ
(t) and F

(γ)
Wφ

(t), respectively; let ϑ(t) increase by
ω + ηt−1 between t− 1 and t such that

ϑ(t) = ϑ0 + ω t +
t−1∑
k=0

ηk , (8)

where ηk forms a Gaussian distribution with mean 0 and
width ∆ϑ, and then

∑t−1
k=0 ηk also satisfies a Gaussian dis-

tribution with mean 0 and width ∆ϑ

√
t. From this and

equation (7), we get:

〈pj〉(γ)(t) = |w2(t)|2
〈
sin2 ϑ(t)

〉
=

|w2(t)|2
∆ϑ

√
πt

∫ ∞

−∞
sin2(ωt+ ϑ0 + x)e−x2/(∆2

ϑ t)dx

=
e−2 γ t

2

[
1 − cos(2ω t+ 2ϑ0)e−∆2

ϑ t
]

(9)

(note that no subindex Wφ appears in 〈pj〉(γ)(t)). If we
further assume that φ(t) also is of a Gaussian distribution
with mean 0 and width ∆φ, we then arrive at

F (γ)(t) =
e−2 γ t

2

[
1 + e−∆2

ϑ t

×
{
1 − sin2(2ω t+ 2ϑ0)

(
1 − e−∆2

φ/4
)}]

. (10)

Figure 2 shows a comparison between the results of the
GA with imperfections and those of equations (9, 10). The
good agreement in 〈pj〉(t) would provide an explanation of
why its lower envelope is not simply given by 〈pj〉 = 0 in
the GA with imperfections; the uncertainty in the rotation
angle during a single iteration accumulates as the iteration
proceeds. Then, ϑ(t) does not represent a definite direc-
tion on a 2-dimensional plane but spreads over an interval
range (−∆ϑ

√
t, ∆ϑ

√
t). This offers an additional decay

channel into the target state |j〉 after ensemble-averaging
(see the term e−∆2

ϑ t in Eq. (9)). Also, in equation (10)
with ∆φ = 0 we have F (γ)(t) = (e−2 γ t/2)

(
1 + e−∆2

ϑ t
)
,

which is given by the solid lines in Figure 2 as the best fit
of Fε(t) of the GA with imperfections. From equation (10),
it immediately follows that F (∆φ �= 0) is always less than
F (∆φ = 0).

Fig. 2. Comparison between the results of the Grover’s algo-
rithm with imperfections and the theoretical predictions given
by equations (9, 10). The symbols indicate the same data as in
Figure 1. The parameters γ’s are the same as in Figure 1 with
(a) ∆ϑ = 2.0 × 10−2, (b) 4.2 × 10−2 and 3.5 × 10−2 (inset),
respectively, and ∆φ = 0 for all three.

In summary, we have investigated imperfection effects
on the time evolution of the Grover’s algorithm both nu-
merically and analytically. An effective two-level model
with dissipation and randomness has been introduced
and the results show a good agreement with the simula-
tion results of the disordered Grover’s algorithm. It turns
out that the main features in the results of the disor-
dered Grover’s algorithm can be understood through the
diffusion-like behavior of quantum states from the original
partial Hilbert space into the full Hilbert space. The two
main decaying mechanisms found in this work are its di-
rect manifestations. Our finding will provide a useful basis
for study of more general imperfection effects in quantum
algorithms.
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the manuscript.
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